Course Description

*Griti Guarantee! If Griti's tutorial videos don't help you get a better grade, send us a note and we'll refund your purchase, no questions asked.

Cover Every Course Topic: This channel supports college level Introductory Calculus for Life Science 4-year programs as a tutorial companion or general refresh. It contains custom library of recorded video tutorials designed to help students achieve success. Each topic includes a concept overview and step-by-step examples, covering of every topic in standard US and Canadian college curriculum.

Engage with Discussions: Ask questions and share tips & tricks in real time with other students around specific videos.



Griti Experts

Tutorials are created by subject experts who have taken and excelled in this course within the last three years at top institutions like UCLA and UC Berkeley.

Course curriculum

  • 1

    Vectors & Matrices

  • 2

    Subspaces of Rn

    • Subspaces of Rn | Example 1

    • Subspaces of Rn | Example 2

  • 3

    Describing Solution Sets

    • Describing Solution Sets | Overview

  • 4

    Row Reduction

    • Row Reduction of a Matrix | Overview

    • Row Reduction | Overview (pt 1)

    • Row Reduction | Overview (pt 2)

  • 5

    Gauss-Jordan

    • Gauss-Jordan | Overview

  • 6

    Linear Transformation

    • Linear Transformations | Overview

    • Linear Transformation | Overview

    • Linear Transformations | Example 1

    • Linear Transformations | Example 3

  • 7

    Invertible Matrices

    • Invertible Matrices | Example 1

    • Invertible Matrices | Example 2

    • Invertible Matrices | Example 3

  • 8

    Matrix Algebra

    • Matrix Algebra | Overview

    • Matrix Algebra | Example 1

    • Matrix Algebra | Example 2

    • Matrix Algebra | Example 3

  • 9

    Kernel and Image of a Linear Transformation

    • Range & Kernal | Overview

    • Range | Example

    • Kernal | Example

    • Kernel and Image of a Linear Transformation | Example 2

    • Kernel and Image of a Linear Transformation | Example 1

  • 10

    Linear Independence

    • Linear Independence | Overview (pt 1)

    • Linear Independence | Overview (pt 2)

    • Linear Independence | Overview

    • Linear Independence | Example 1

    • Linear Independence | Example 2

    • Linear Independence | Example 3

  • 11

    Column & Row Space

    • Row Space & Column Space | Overview (pt 1)

    • GRow Space & Column Space | Overview (pt 2)

    • Row Space Column Space | Example 1

    • Row Space Column Space | Example 2

  • 12

    Change of Basis

    • Change of Basis | Overview

    • Basis | Overview

    • Change of Basis | Overview (pt 1)

    • Change of Basis | Overview (pt 2)

    • Change of Basis | Example

    • Change of Basis | Similar Matrices | Example 3

  • 13

    Dimensions

    • Dimensions | Overview

  • 14

    Rank-Nullity Theorem

    • Rank & Nullity | Overview

    • Rank - Nullity | Overview (pt 1)

    • Rank - Nullity | Overview (pt 2)

    • Rank-Nullity Theorem |Example 1

    • Rank-Nullity Theorem | Example 2

  • 15

    Coordinates

    • Coordinates | Example 1

    • Coordinates | Example 2

  • 16

    Orthogonality

    • Orthogonality| Overview (pt 1)

    • Orthogonality | Overview (pt 2)

  • 17

    Orthogonal Projections & Transformations

    • Orthogonal Projections & Transformations | Overview (pt 1)

    • Orthogonal Projections & Transformations | Overview (pt 2)

    • Orthogonal Bases-Projections | Example 1

    • Orthogonal Bases-Projections | Example 2

    • Orthogonal Bases-Projections | Example 3

    • Orthogonal Matrices and Transformations | Example 1

    • Orthogonal Matrices and Transformations | Example 2

  • 18

    Gram-Schmidt

    • Gram-Schmidt | Overview

    • Gram-Schmidt Process | Example

  • 19

    QR - Factorization

    • QR - Factorization | Overview (pt 1)

    • QR - Factorization | Overview (pt 2)

    • QR Factorization | Example 1

    • QR Factorization | Example 2

    • QR Factorization | Example 3

  • 20

    Least Squares Method

    • Least Squares Method | Overview

    • Least Squares Method | Example 1

    • Least Squares Method | Example 2

    • Least Squares Method | Example 3

  • 21

    Determinant

    • Determinants | Overview

    • Determinants | Example 1

    • Determinants | Example 2

    • Determinants | Example 3

    • Determinant | Overview

    • Determinants | Example 4

  • 22

    Eigen Values & Vectors

    • Eigen Values & Vectors | Overview

    • Eigen Values & Vectors | Overview (pt 1)

    • Eigen Values & Vectors | Overview (pt 2)

    • Eigen Values | Examples

    • Eigenvalues-Eigenvectors | Example 1

    • Eigenvalues-Eigenvectors | Example 2

    • Eigenvalues-Eigenvectors | Example 3

  • 23

    Column Space

    • Column Space | Overview

  • 24

    Diagonalization of Matrices & Dynamical Systems

    • Dimensions | Overview

    • Dynamical Systems | Overview (pt 1)

    • Dynamical Systems | Overview (pt 2)

    • Diagonalization | Overview (pt 1)

    • Diagonalization | Overview (pt 2)

    • Diagonalization-Symmetric Matrices-Discrete Dynamical Systems | Example 1

    • Diagonalization-Symmetric Matrices-Discrete Dynamical Systems | Example 2

    • Diagonalization-Symmetric Matrices-Discrete Dynamical Systems | Example 3

  • 25

    Echelon Form

    • Echelon Form | Overview

  • 26

    Gauss Method & Row Operations

    • Gauss Method & Row Operations | Overview

  • 27

    Inverses

    • Inverses | Overview

  • 28

    Linear Systems and Row Reduction

    • Linear Systems and Row Reduction | Example 1

    • Linear Systems and Row Reduction | Example 2

    • Linear Systems and Row Reduction | Example 3

  • 29

    Matrix Inverses

    • Matrix Inverses | Overview

  • 30

    Matrix Mappings

    • Matrix Mappings | Overview

  • 31

    Matrix Multiplication

    • Matrix Multiplication | Overview

    • Matrix Multiplication | Example

  • 32

    Matrix Sums & Scalar Products

    • Matrix Sums & Scalar Products | Overview

  • 33

    Similarity of Matrices

    • Similarity of Matrices | Overview

  • 34

    System & Matrix

    • \System & Matrix | Overview

  • 35

    Vector Spaces & Subspaces

    • Vector Spaces & Subspaces | Overview